Persistent Cohomology and Circle-valued coordinates

Dmitriy Morozov Vin de Silva Mikael Vejdemo-Johansson

July 9, 2009

3 N

Outline

2 Theory: Persistent cohomology and circle-valued maps

3 Practice: Finding and interpreting coordinatizations

/□ ▶ < 글 ▶ < 글

Coordinatization

Essentially

It's all about finding *coordinate function* on a dataset $X \subseteq \mathbb{R}^d$. Preferably few coordinates - cognitive tools.

Image: A Image: A

э

Coordinatization

Essentially

It's all about finding *coordinate function* on a dataset $X \subseteq \mathbb{R}^d$. Preferably few coordinates - cognitive tools.

Classically

- Linear coordinatization: Find maps X → ℝ, concentrating information.
- Principal Component Analysis; Projection pursuit

伺 ト イヨト イヨト

Coordinatization

Essentially

It's all about finding *coordinate function* on a dataset $X \subseteq \mathbb{R}^d$. Preferably few coordinates - cognitive tools.

Classically

- Linear coordinatization: Find maps X → ℝ, concentrating information.
- Principal Component Analysis; Projection pursuit

Recently

- Nonlinear methods: drop expectation that for f coordinate: $f(\lambda x + \mu y) = \lambda f(x) + \mu f(y).$
- MDS, Kernel methods, Locally linear methods

Problematic cases

Some shapes take up too many coordinates.

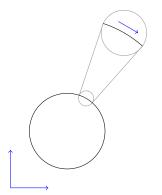
< ∃ >

-

э

Problematic cases

Some shapes take up too many coordinates.



Locally 1-dimensional. Globally 2 coordinates needed to describe all points. The shape doesn't fit in \mathbb{R} .

How can we fix this?

Circle-valued coordinates

- Use $S^1 = [0,1]/(0 \sim 1)$ as additional coordinate space
- Fixes the circle
- Fixes the torus
- Occurs naturally:
 - Phase coordinates for waves
 - Angle coordinates for directions

伺 ト イヨト イヨト

Outline

2 Theory: Persistent cohomology and circle-valued maps

3 Practice: Finding and interpreting coordinatizations

同 ト イ ヨ ト イ ヨ ト

Circle-valued coordinates

Problem remains: how do we find circle-valued coordinates?

→ 3 → < 3</p>

Circle-valued coordinates and cohomology

Problem remains: how do we find circle-valued coordinates?

Persistent cohomology

- Degree one cohomology equivalent to circle-valued maps
- Persistence picks out relevant features from noise
- Once a feature-rich parameter has been found, we can work in ordinary (non-persistent) cohomology theories

The algorithm we use is a variation on the Persistence algorithm. We introduce simplices one after the other, and reduce a cumulative coboundary matrix.

• • • • • • •

From cohomology to circle-valued coordinatizations

Use canonical isomorphism

$$H^1(X;\mathbb{Z})\cong [X,S^1]$$

Issues

 Easy to compute: Modular cohomology, coefficients in 𝑘_p for small primes p.

Need for the isomorphism: Integer-valued cohomology. Smoothness: Integer cohomology gives constant values on all vertices, and wraps edges in the complex around the target circle.

 Numerical stability of cohomology computation and of the smoothing operations.

Smoothing

- Integral 1-cocycle: integer weighted edge graph.
- Coordinates found by edge traversal, increasing by edge weights.
- Each cohomologous cocycle guaranteed by cocycle condition to give compatible values, mod 1.0, to each vertex.
- Application straight on integral cocycle yields value 0 at each vertex.
- Given ζ integral cocycle, we wish to find cohomologous cocycle z such that the edges are small.
- Hence, we wish to find x such that $\zeta + \partial x$ has minimal L_2 -norm.
- This is a well-known optimization problem. We use the LSQR algorithm.

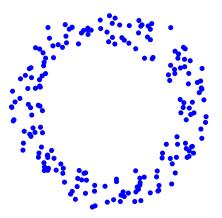
Outline

2 Theory: Persistent cohomology and circle-valued maps

3 Practice: Finding and interpreting coordinatizations

同 ト イ ヨ ト イ ヨ ト

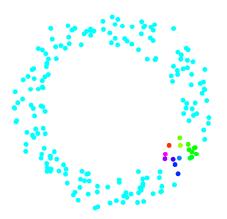
Parametrized circles



Parametrized circles

₽ ▶

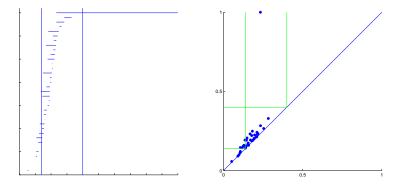
Parametrized circles



₽ ▶

э

Parametrized circles



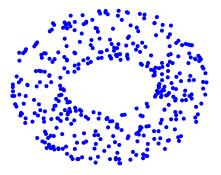
э

.⊒ . ►

▶ < 臣 > < 臣 >

æ

Torus

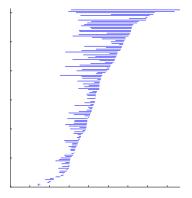


・ロト ・日・ ・ 回・

æ

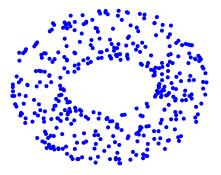
-

Torus



æ

Torus

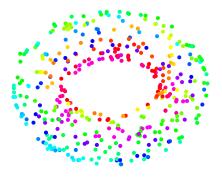


・ロト ・日・ ・ 回・

æ

-

Torus



・ロ・・部・・ ほ・・

æ

э

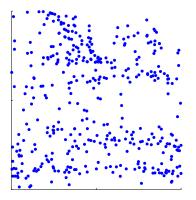
Torus

・ロ・・部・・ ほ・・

æ

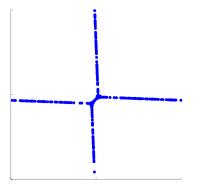
э

Torus



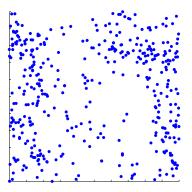
Correlation plot for this torus parametrization

	Motivation Theory Practice	
Torus		



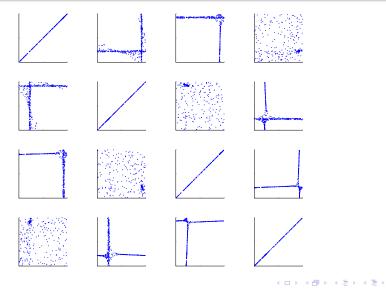
Correlation plot for a wedge of two circles

Torus



Correlation plot for the elliptic curve given by $y^2z - x^3 - xz^2 = 0$ in $\mathbb{C}P^2$. Metric is given by $d(p,q) = \tan^{-1}(p_x \overline{q_x} + p_y \overline{q_y} + p_z \overline{q_z})$

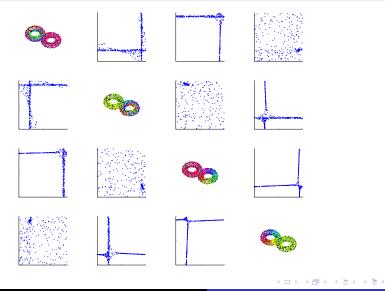
Pop quiz



Morozov-de Silva-Vejdemo Johansson Persistent Cohomology and Circle-valued coordinates

æ

Pop quiz – the Double Torus



Morozov-de Silva-Vejdemo Johansson Persistent Cohomology and Circle-valued coordinates

3

Persistent cocycles

Given a total filtration order of simplices $\sigma_1, \ldots, \sigma_m$, appearing at times $\varepsilon_1, \ldots, \varepsilon_m$, for each $0 \le k \le m$, we maintain

- A set I_k of indices corresponding to "live" cocycles
- A list of cocycles α_i for $i \in I_k$. Each α_i involves only cocycles appearing no earlier than ε_i .

伺 ト く ヨ ト く ヨ ト

Persistent cocycles: update step

The algorithm starts with both of these empty. The update, when the simplex σ_k is introduced works by:

• Compute the coboundaries $d\alpha_i = c_i[\sigma_k]$ within the complex $\mathbb{X}_k = \bigcup_{i=1}^k \sigma_i$.

伺 ト イヨト イヨト

Persistent cocycles: update step

The algorithm starts with both of these empty. The update, when the simplex σ_k is introduced works by:

- Compute the coboundaries $d\alpha_i = c_i[\sigma_k]$ within the complex $\mathbb{X}_k = \bigcup_{i=1}^k \sigma_i$.
- **2** If all $c_i = 0$, then σ_k starts a new cocycle. $I_k = I_{k-1} \cup \{k\}$ and $\alpha_k = [\sigma_k]$.
 - **9** Otherwise, one cocycle dies at this point. Let j be the largest index such that $c_j \neq 0$.

$$I_k = I_{k-1} \setminus \{j\}$$
 and for all $lpha_i$, we update with

$$\alpha_i = \alpha_i - (c_i/c_j)\alpha_j$$

The interval $[\varepsilon_j, \varepsilon_k)$ is returned.

同 ト イ ヨ ト イ ヨ ト

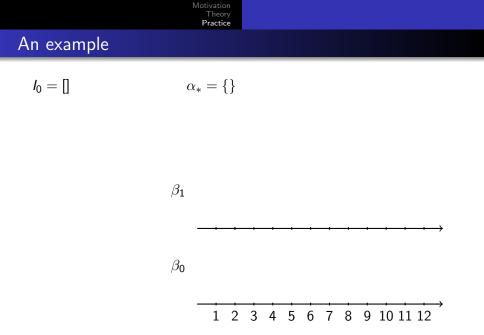
Persistent cocycles: update step

The algorithm starts with both of these empty. The update, when the simplex σ_k is introduced works by:

- Compute the coboundaries $d\alpha_i = c_i[\sigma_k]$ within the complex $\mathbb{X}_k = \bigcup_{i=1}^k \sigma_i$.
- **2** If all $c_i = 0$, then σ_k starts a new cocycle. $I_k = I_{k-1} \cup \{k\}$ and $\alpha_k = [\sigma_k]$.
 - Otherwise, one cocycle dies at this point. Let j be the largest index such that c_j ≠ 0.
 - $I_k = I_{k-1} \setminus \{j\}$ and for all α_i , we update with

$$\alpha_i = \alpha_i - (c_i/c_j)\alpha_j.$$

The interval $[\varepsilon_j, \varepsilon_k)$ is returned.

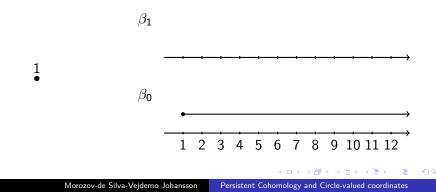


Morozov-de Silva-Vejdemo Johansson Persistent Cohomology and Circle-valued coordinates

An example

$$I_1 = [1]$$
 $\alpha_* = \{[\sigma_1]\}$

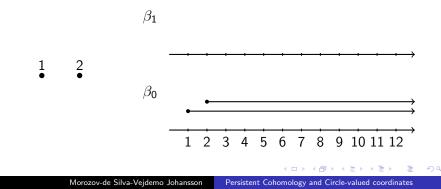
Coboundary is 0



An example

$$I_2 = [1, 2]$$
 $\alpha_* = \{[\sigma_1], [\sigma_2]\}$

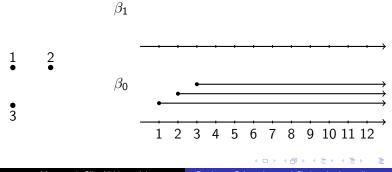
Coboundary is 0



An example

$$I_3 = [1, 2, 3] \qquad \qquad \alpha_* = \{[\sigma_1], [\sigma_2], [\sigma_3]\}$$

Coboundary is 0

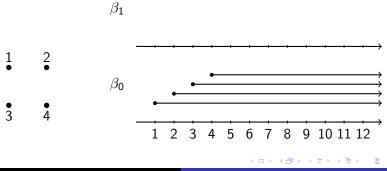


Morozov-de Silva-Vejdemo Johansson Persistent Cohomology and Circle-valued coordinates

An example

$$I_4 = [1, 2, 3, 4] \qquad \qquad \alpha_* = \{[\sigma_1], [\sigma_2], [\sigma_3], [\sigma_4]\}$$

Coboundary is 0



An example

$$I_4 = [1, 2, 4] \qquad \qquad \alpha_* = \{[\sigma_1 + \sigma_3], [\sigma_2], [\sigma_4]\}$$

Coboundary is: $-d\alpha_1 = d\alpha_3 = [\sigma_5]$. 3 dies.

 β_1

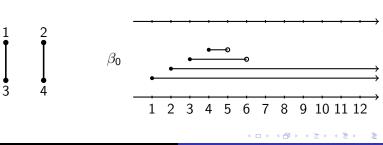


An example

$$I_4 = [1, 2] \qquad \qquad \alpha_* = \{ [\sigma_1 + \sigma_3], [\sigma_2 + \sigma_4] \}$$

Coboundary is:
$$-d\alpha_2 = d\alpha_4 = [\sigma_6]$$
. 4 dies.

 β_1

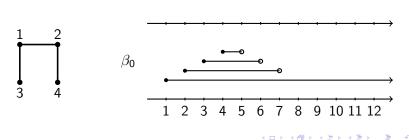


An example

$$I_4 = [1] \qquad \qquad \alpha_* = \{ [\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4] \}$$

Coboundary is: $-d\alpha_1 = d\alpha_2 = [\sigma_7]$. 2 dies.

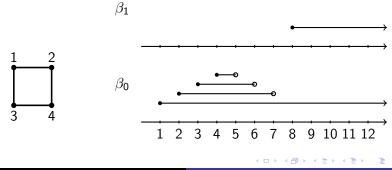
 β_1



An example

$$I_4 = [1, 8] \qquad \qquad \alpha_* = \{ [\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4], [\sigma_8] \}$$

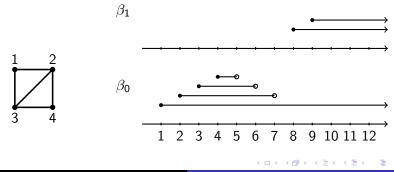
Coboundary is 0



An example

$$I_4 = [1, 8, 9] \qquad \qquad \alpha_* = \{ [\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4], [\sigma_8], [\sigma_9] \}$$

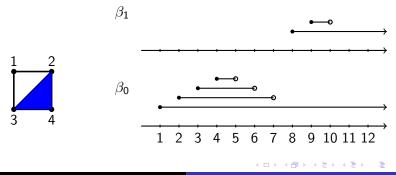
Coboundary is 0



An example

$$I_4 = [1, 8] \qquad \qquad \alpha_* = \{ [\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4], [\sigma_8 - \sigma_9] \}$$

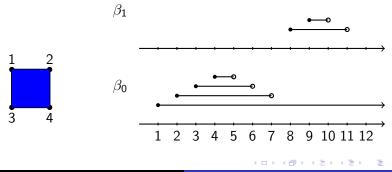
Coboundary is $d\alpha_8 = d\alpha_9 = [\sigma_{10}]$. 9 dies.



An example

$$I_4 = [1] \qquad \qquad \alpha_* = \{ [\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4] \}$$

Coboundary is $d\alpha_8 = [\sigma_{11}]$. 8 dies.



Morozov-de Silva-Vejdemo Johansson Persistent Cohomology and Circle-valued coordinates

Software and performance

The persistent cohomology algorithm is implemented in two places:

jPlex

- http: //comptop.stanford.
- edu/programs/jplexJava based. Matlab
- integration.
- Will do cohomology in the next release.

Dionysus

- http://www.mrzv.org/ software/dionysus/
- C++ based. Has Python bindings.
- Still very much under development.
- Orders of magnitude faster than jPlex on these examples.

Timings for Dionysus

Example	# data	# simplices	total	time/size
	points		time	$(\mu s/spx)$
Noisy circle	200	23 475	0.10s	4.26
Torus knot	400	36 936	0.16s	4.33
Wedge of 2 circles	400	76763	0.36s	4.69
2 disjoint circles	400	45 809	0.20s	4.37
Torus	400	61 522	0.29s	4.71
Elliptic curve torus	400	44 184	0.14s	3.17
Double torus	3 1 2 0	764 878	5.28s	6.90

э

- 《圖》 《문》 《문》

Acknowledgements

Thanks are due for this to:

- Vin de Silva, Dmitriy Morozov my collaborators
- Gunnar Carlsson
- The organizers
- ONR, DARPA-TDA, Pomona College and Stanford University - funding

4 3 b